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Abstract
In the recent paper Reiss and Krainov (2003 J. Phys. A: Math. Gen. 36 5575)
developed two new approximations for the generalized Bessel function that
arises in the analytical treatment of strong-field multiphoton ionization theories.
We show that their ‘tunnelling approximation 1’ systematically underestimates
the theoretical ionization rate by a factor of 2 or more for typical laser
frequencies. More important still, only a few first ATI peaks of the lowest
energy may be reproduced quite well using this approximation.

PACS numbers: 02.30.Gp, 02.60.Gf, 32.80.Rm, 42.50.Hz

The generalized Bessel function Jn(u, v) = ∑∞
k=−∞ Jn−2k(u)Jk(v) [1, 2] appears in various

formulae describing ionization (or detachment) rates of atoms (or ions) in intense linearly
polarized laser field. One of these expressions is given below in equation (1). The formula (1)
has a form of infinite sum over n-photon processes, and partial ionization rates �n are the
heights of ATI (above-threshold ionization [3]) succeeding δ-function energy peaks, which are
separated by the single-photon energy. In what follows we use atomic units: h̄ = e = me = 1.
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This is the SFA (strong-field approximation) [2] nonrelativistic result for the 1S hydrogen
atom in a linearly polarized plane-wave field of frequency ω and intensity I = 4zω3. The
integral over ϑ reflects summation over various directions of the ionized outgoing electron.

The kinetic energy of this electron is En = p2
n

2 = (n − z)ω −EB , the binding energy of the 1S
state is EB = 1

2 , and the minimal number of photons absorbed is n0 = [
EB

ω
+ z

]
+ 1, where the

symbol [· · ·] denotes the integer part of the (positive) number inside. The intensity parameter z

is connected with UP = zω = I
4ω2 where UP stands for the ponderomotive potential (the time-

averaged kinetic energy of a classical free charge in an electromagnetic plane-wave field), and
I stands for the radiation intensity in atomic units (1 au = 3.51 × 1016 W cm−2). In the SFA
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Figure 1. Partial ionization rate �n as a function of the kinetic energy En of the outgoing electron
(see equation (1)). Theoretical SFA calculations were done for the ground state of the hydrogen
atom by a linearly polarized plane wave laser field of frequency ω = 0.08 au and intensity given
by the parameter z1 = 40; solid line: with the exact generalized Bessel functions, dotted line:
with the ‘tunnelling 1’ approximation of the generalized Bessel functions, and crosses: with the
asymptotic approximation of the generalized Bessel functions.

one assumes [2] that the laser field is strong enough that one can neglect the influence of the
Coulomb potential on the final state of the outgoing electron. This may be true only when
the oscillation energy of the ionized electron in the laser field dominates the atomic binding
energy. Therefore the dimensionless parameter z1 ≡ 2UP /EB = 1/κ2 should be much larger
than unity (κ is the Keldysh parameter [4]).

If the frequency of incoming electromagnetic field is low enough (like for light interacting
with the ground state of the hydrogen atom) photoionization may be understood, at least to
some extent, as quasi-static tunnelling. One often determines the tunnelling regime by the
conditions κ � 1 and ω � 1. The potential barrier, which is penetrated by a bound atomic
electron, arises as the combined effect of the atomic Coulomb potential and the potential of
slowly varying electric field of the plane wave [3]. The peak of the barrier lies above the 1S
level only if F < 1/16 (F : the electric field amplitude of the laser). In the opposite case, for
stronger fields, instead of tunnelling, barrier-suppression (or above-barrier) ionization takes
place [5]. The SFA (or in general the nonperturbative KFR theory [4, 6, 2]) treats both these
domains on equal footing in the multiphoton picture, where the ionized electron may absorb
n = n0, n0 + 1, n0 + 2, . . . photons. In [1] Reiss and Krainov claim that ‘Tunnelling occurs
with low velocity of the ionized electron, so n ≈ n0’, and then they consider only the electrons
with n0 � 1, n − n0 � 10.

In figures 1 and 2 we show the ATI spectra of electrons from the SFA theory of 1S
hydrogen atom for two different frequencies of incoming radiation. We have calculated
these spectra using equation (1) with the exact generalized Bessel function (solid line), the
‘tunnelling 1’ approximation [1] of the generalized Bessel function (dotted line), and the
asymptotic approximation [1, 2] of this function (crosses). Of course, the lines are envelopes
of the energy peaks successively separated by the photon energy ω. In figure 1 we have
chosen ω = 0.08 au, because this frequency is roughly in the middle of the optical spectrum,
and z1 = 40, because it is well in the SFA applicability range. For these parameters the
electric field amplitude is F = 0.506 > 1/16, so actually above-barrier ionization takes place.
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Figure 2. As figure 1, but for a lower frequency ω = 0.008.

In figure 2 we have taken ten times smaller frequency ω = 0.008 au, and the same z1, hence
the electric field amplitude is now F = 0.0506 < 0.0625 = 1/16. Therefore one might
expect the ‘tunnelling 1’ approximation to be more suitable in this case.

While the tunnelling conditions expressed in equations (3)–(5) of Reiss are correct, the
assumption that only the lowest energy peaks are dominant in strong-field ionization is very
weakly satisfied. The partial ionization rates �n are largest for n ≈ n0 indeed, but there
are much more following energy peaks, whose total contribution to ionization rate is even
greater or at least quite significant. One must remember that the SFA energy spectrum of
ionized electrons is infinite. In figures 1, 2 we have cut the spectra in such a way that
an average kinetic energy 〈E〉 of the outgoing electron lies in the middle of the abscissa
axis. From the expression 〈E〉 = ∑∞

n=n0
�nEn

/ ∑∞
n=n0

�n, we have obtained 〈E〉 = 0.58 for
ω = 0.08 and 〈E〉 = 0.26 for ω = 0.008 using the exact generalized Bessel functions. In the
‘tunnelling 1’ approximation respective values are much smaller: 〈E〉 = 0.19 for ω = 0.08
and 〈E〉 = 0.032 for ω = 0.008. We clearly see that the ‘tunnelling 1’ approximation fails
rapidly with increasing the number n−n0. ‘Tunnelling 1’ gives too small a result, for example
of roughly one order of magnitude already for n − n0 = 10. For z1 = 40 and frequencies
ω = 0.08 and ω = 0.008, the ionization rate is respectively 1.8 and 3.8 times smaller
for ‘tunnelling 1’ than the exact result. Against the background of this approximation, the
asymptotic approximation derived many years ago by Reiss [2, 1] is excellent and approaches
all the spectrum very well. The asymptotic approximation slightly overestimates the exact
result (obtaining the accuracy of the order of 10% or better) but does not fail with increasing
the number n − n0. This is very important because the KFR theory becomes more accurate
as En ∝ n − n0—the kinetic energy of the ionized electron increases. According to the main
presumption of the KFR theory, one neglects the interaction with the Coulomb potential in the
final state of the outgoing electron.

In figures 3 and 4 we show the SFA ionization rate as a function of intensity for both
frequencies considered earlier. It has been still beyond our computational power to use the
exact generalized Bessel functions and to calculate ionization rate for very high intensities
with sufficient accuracy. However, we have got some numerical experience with not so
high intensities. Also the data from figures 1, 2 suggest that the difference between exact and
asymptotic results remains small. Therefore in figures 3 and 4 we only compare ionization rates
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Figure 3. Ionization rate � as a function of intensity for ω = 0.08 au. Theoretical SFA calculations
were done for the ground state of the hydrogen atom by a linearly polarized plane wave laser field;
solid line: with the asymptotic approximation of the generalized Bessel functions and dotted line:
with the ‘tunnelling 1’ approximation of the generalized Bessel functions. The range of intensities
corresponds to 10 � z1 � 104 here.
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Figure 4. As figure 3, but for a lower frequency ω = 0.008.

in the asymptotic approximation (solid line) with these rates in the ‘tunnelling 1’ approximation
(dotted line). Our intensities cover the whole applicability range of the nonrelativistic SFA
and correspond to 10 � z1 � 104. We conclude that ‘tunnelling 1’ may serve as the useful
bottom limitation of ionization rate, even for very high intensities, when calculations involving
numerical integration over ϑ are very time-consuming. The integral over ϑ in equation (1) can
be calculated analytically in the ‘tunnelling 1’ approximation, using equation (34) of [1]. Our
data have been obtained in this way. We have not investigated the ‘tunnelling 2’ approximation
[1], because it obviously may not be better than ‘tunnelling 1’, which is already a pretty large
simplification.
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